Create high-quality synthetic datasets with a few lines of code. Instantly see results and generate production-ready labeled datasets.
$ go install github.com/Rapid-Vision/rv@latest
1import rv
2
3class BasicScene(rv.Scene):
4 def generate(self):
5 self.get_world().set_params(sun_intensity=0.03)
6 cube = (
7 self.create_cube()
8 .set_location((1, 0, 0.5))
9 .set_scale(0.5)
10 .set_tags("cube")
11 )
12 sphere = (
13 self.create_sphere()
14 .set_location((-1, 0, 1))
15 .set_shading("smooth")
16 .set_tags("sphere")
17 )
18 plane = self.create_plane(size=1000)
19 empty = self.create_empty().set_location((0, 0, 1))
20
21 self.get_camera().set_location((7, 7, 3)).point_at(empty)
RV simplifies synthetic dataset creation with just two core commands that handle everything from preview to production.
rv preview script.py
rv render script.py -n 1000 -p 3
Built on Blender's powerful 3D engine with a simple command interface designed for data scientists and ML engineers.
Try Rapid Vision out to generate high-quality randomized labeled datasets for your next computer vision project.